
High
Performance
Computing on
commodity PCs
Alfio Lazzaro
CERN openlab

Seminar at Department of Physics
University of Milan
January 14th, 2011

Computing in the years

2

Moore’s law 	

Transistors used to increase raw-performance	

 Increase global performance	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Frequency scaling and power consumption

q  The increase in performance was mainly driven by the increase of the
clock frequency
§  Pentium Pro in 1996: 150 MHz
§  Pentium 4 in 2003: 3.8 GHz (~25x!)

q  However, this brought to a significant increase in power consumption

§  Pollack’s rule (perf ≅ power1/2)
• 10% more performance costs about 20% more in power

3 Alfio Lazzaro (alfio.lazzaro@cern.ch)

http://www.processor-comparison.com/power.html	

Reducing Power
q  Power = EnergyPerInst * InstPerSecond

§  To keep power constant, EPI has to decrease at the same pace as
increase in IPS (IPS = performance)

q  EPI = Vcc
2 * C + Leakage

§  C is the capacitance
§  Vcc

2 is the supply voltage
q  Vcc needs to be kept as low as possible

§  It cannot be reduced by big margins, since a low voltage level slows down
the switching speed and imposes limits on the maximum frequency

q  C is related to the physical properties of the material
§  Not easy to decrease

q  At the time of the Pentium 4 (2003), the increase in frequency was no
more possible because of increase in leakage currents
All these factors limited the increase in performance of the single

computational unit (and it is very unlikely that the situation will change
in the next 5-10 years)

4 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Consequence of the Moore’s Law

q Hardware continues to follow Moore’s law
§ More and more transistors available for computation

• More (and more complex) execution units: hundreds of new
instructions

• Longer SIMD (Single Instruction Multiple Data) vectors
• More hardware threading
• More and more cores

5 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Multi-core

q To overcome the power problem, a turning point was
reached and a new technology emerged: multi-core
§  Increase the “global” performance by adding new

computational units (cores) on the same die (up to 12
cores currently)

• Each core are complete processing units

§  Keep low frequency and consumption
q Dedicated architectures

 (accelerators):
§  GPGPU (NVIDIA, AMD, Intel MIC)
§  IBM CELL
§  FPGA (Reconfigurable computing)

6 Alfio Lazzaro (alfio.lazzaro@cern.ch)

The Challenge of Parallelization

q Keep in mind that the performance of a single core
are not increasing as in the past
§  Applications which run on a single core (sequential) takes

a very little benefit from multicore
§  Of course we can think to run more applications in parallel

using the different cores, but still each application runs at
the same speed

q A single application can take benefit from multi-core
only if exhibits parallelism
§  Think parallel!
§ Write/rewrite your application using parallel concepts: very

challenging in case of legacy software

7 Alfio Lazzaro (alfio.lazzaro@cern.ch)

When we want to parallelize

q Reduction of the wall-time: we want to
achieve better performance, defined as
(results response/execution) times

q Memory problem: large data sample, so we
want to split in different sub-samples

8	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Typical problem suitable for parallelization

q The problem can be broken down into subparts
(embarrassing parallelism):
§  Each subpart is independent of the others
§ No communication is required, except to split up the

problem and combine the final results
§  Ex: Monte-Carlo simulations

q Regular and Synchronous Problems:
§  Same instruction set (regular algorithm) applied to all data
§  Synchronous communication (or close to): each processor

finishes its task at the same time
§  Ex: Algebra (matrix-vector products), Fast Fourier

transforms

9 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Example of parallel problems

q Physics events are independent of each other
§  Embarrassing parallelism

• For example, if we need to simulate 1’000’000 events, for
instance, we can split the work in 10’000 jobs processing 100
events each, or 100 jobs processing 10’000 events each (or any
other combination for that matter) and simply join the output files
at the end

q Simulation of complex physics and chemical
processes, universe simulation, brain simulation, …
§  The parallel processes need to communicate each other

many times during the execution
q Computing games: maybe the best example of

application which has profited from parallel systems
10 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Example: Galaxy formation

q Galaxy formation (http://www.isgtw.org/?
pid=1001250)
§ a total of about one billion individual grid cells
§ adaptive mesh refinement

11

The 3D domain (2 billion light years of side). 	

Colors represent the density of the gas	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Scalability issue in parallel applications

–  Ideal case
»  our programs would be written in such a way that

their performance would scale automatically
»  Additional hardware, cores/threads or vectors,

would automatically be put to good use
»  Scaling would be as expect:

•  If the number of cores double, scaling (speed-up)
would be 2x (or maybe 1.99x), but certainly not
1.05x

–  Real case
»  Much more complicated situation…

12	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Real cases

q  Parallelization introduces specific concepts (race conditions,
data sharing, synchronization…) which are difficult to
manage
§  Parallel programming is at least an order of magnitude more complex

than sequential one
§  Parallel version of the code is much more difficult to optimize and

debug
§  Parallel implementations can require rethinking the algorithms in a

completely different way (for example for the accelerators)

q  Handling existing complex and dispersed “legacy” software
§  Difficult to manage/share/tune resources (memory, I/O): better to rely in

the support from OS and compiler
§  Coding and maintaining thread-safe software at user-level is hard
§  Need automatic tools to identify code to be made thread-aware

•  Example Geant4: 10K lines modified! (thread-parallel Geant4)

13	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Speed-up (Amdahl’s Law)
q Definition:

 S → speed-up
 N → number of parallel processes
 T1 → execution time for sequential algorithm
 TN → execution time for parallel algorithm with N processes
§  Remember to balance the load between the processes. Final

time is given by the slowest process!

q  Maximum theoretical speed-up: Amdahl’s Law
 P → portion of code which is parallelized

§  Implication:

§  Need to find good algorithms to be parallelized!
14	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Amdahl’s Law

15	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Speed-up: Gustafson's Law

q  Any sufficiently large problem can be efficiently parallelized

 S → speed-up
 N → number of parallel processes
 P → portion of code which is parallelized

q  Amdahl’s law VS Gustafson's law
§  Amdahl's law is based on fixed workload or fixed problem size. It implies

that the sequential part of a program does not change with respect to
machine size (i.e, the number of processors). However the parallel part is
evenly distributed by N processors

§  Gustafson's law removes the fixed problem size on the parallel
processors: instead, he proposed a fixed time concept which leads to
scaled speedup for larger problem sizes

16	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Supercomputers
q  Systems for high performance computing (HPC)

§  Basically massive parallel execution on several computational nodes
connected by fast netoworks

§  Site www.top500.org lists the 500 most powerful systems (Top500)

q  Very expensive systems for specifics users (e.g. military agency)!!!!

17

Nov. 2010 list	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Jaguar @ Oak Ridge (USA)

18 Alfio Lazzaro (alfio.lazzaro@cern.ch)

exaFLOPS

q  Current trend foresees an exaFLOPS system by the end of 10s
§  Useful for some applications, e.g. real-time brain simulation and weather

forecasting (Grand Challenges)
q  Nobody knows how to build such a monster!

§  Maximum ~20MW is considered reasonable
§  Billions of parallel processes if extrapolating the current systems!

19

Intel
ASCI
Red	

Intel ASCI Red @
Sandia Labs

First system @
1 teraFLOPS

9298 Pentium Pro @
200MHz

104 cabinets
230 m2

850 kW of power (not
including air
conditioning)

Alfio Lazzaro (alfio.lazzaro@cern.ch)

exaFLOPS and commodity computing

q  The research on exaFLOPS systems involves big companies and
research centers
§  Huge efforts and quantity of money

q  Although exaFLOPS systems are not directly connect to commodity
systems, we should consider that the research on these systems can
influence the entire computing systems world
§  Goal is to have commodity petaFLOPS systems

• Normal users can use these systems for their research, but without paying
“an arm and a leg”

q  3 important parameters:
§  Performance é
§  Power consumption ê
§  Cost ê

So the performance must be normalize for the other two parameters
q  Other parameters to take in account are: manageability, programmability,

reliability, which are not easy to quantify…

20

Let’s focus on systems that
maximize performance over
power consumption and cost	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

CPUs

21	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

q  CPUs are for general tasks, like running operating systems
q  Parallelism ad different levels

§  Inside core using pipelined execution units, superscalar
execution, vectors units (SIMD) and hardware multi-threading

• Currently vector units (128bit) support 4 single precision or 2 double
precision operations in one go. Already this year new CPUs will double
this number of operations (256bit units)

§  Inside the CPU using multicore: 2, 4, 6, 8, 12 cores
• Already announced 16 cores by AMD and the number will increase in

the future (many-core systems)
§  Between CPUs on the same motherboard (multi-socket):

• 2 sockets are the standard for many users; 4 sockets and 8 sockets
still to much expensive for general users

• Complex configuration for CPUs connections and memory (NUMA)
q  Potentially soon each computational node will have the

possibility to run hundreds of parallel processes!

Common CPU Architectures

q Different architectures for CPUs available in the
market
§  x86 and x86-64 (Intel and AMD): 15 – 150 Watts

• The most common architectures

§  Intel Itanium (native 64bit): 130 – 185 Watts
• Specific applications which require high performance (expensive)

§  Power-derived architecture from IBM: 10 – 200 Watts
• Common in HPC (e.g. BlueGene) and in specific applications
• Base for a lot of CPUs used in many fields, like Xenon CPU

(Microsoft Xbox 360) and Broadway (Nintendo Wii)

§  SPARC architecture from Oracle: ~140 Watts
• Specific applications which require high performance (expensive)

22 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Common Low-power CPU Architectures
q  Mainly targeting for mobile market and embedded systems,

where power consumption is the main concern
§  ARM (32bit): ~1 Watt

• 75% of mobile market (e.g. cellular phones)
• Interesting architecture with impressive ratio performance/power

consumption, but limited versatility
• Several projects to build systems with hundreds (thousands) of ARM

for massive parallelization

§  VIA Nano (64bit): ~ 3 Watts
• Compatible with x86-64 instructions, the main target is ultra-mobile

laptop (netbook) PCs

§  Intel Atom (64bit): 0.7 – 8 Watts
• Compatible with x86-64 instructions
• Several projects to build clusters of Atom CPUs for massive

parallelization with high performance/consumption ratio
23 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Accelerators
q  Used as co-processors with the CPU for specialized tasks

§  Generally for intensive floating point operations
• Demand for computing power grows faster than the compute

capabilities of modern processors
• Example of applications: 3D graphics

§  Increase performance, but reduce versatility
q  The prominent example is graphics co-processors (GPUs)

§ Mostly for gaming and interactive entertainment
§  It is now very common to use GPUs for HPC (GPGPU)

• Very attractive solution to have “cheap” FLOPS
• Increasing accessibility (every PC has a GPU…)
• Good ratio performance/power at good price

q Several other accelerators
§  Intel MIC (x86-64 compatible), expected in 2012
§  CELL processor
§  FPGAs

24 Alfio Lazzaro (alfio.lazzaro@cern.ch)

GPUs

q  A lot of interest is growing around GPUs for HPC

§  4 out of top 10 supercomputers in Top500 have GPUs
• 70% of performance in mixed CPU-GPU computers is provided by GPUs

§  If considering the ratio performance/power consumption (Green500 list),
then 8 out of the top 10 supercomputers have GPUs

q  Impressive performance (3x – 7x than a multi-core CPU), but high
power consumption (up to 250Watts)

q  Great performance using single floating point precision (IEEE 754
standard): up to 1 teraFLOPS (w.r.t ~150 GFLOPS of a multicore
CPU): same performance of the ASCI Red supercomputer!!!!

q  Completely different software paradigm!
§  Need to rewrite most of the code to benefit of this massive parallelism

(thread parallelism), especially memory usage: it can be not
straightforward…

25	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

GPUs systems

q  Two main vendors
§  NVIDIA with “Fermi” architecture: peak 1TFLOP Single

Precision (50% Double Precision) @ ~225W (Tesla M2050)
• GeForce GPUs have same SP performance, half for DP

§  AMD with “Cypress” architecture: peak 2.72 TFLOPS SP (544
GFLOPS DP) @ ~220W (AMD 5870)

q  Intel has its GPUs series (limited performance)
q  PCIe form factor (data transfer across PCIe

can be a bottleneck for most applications)
§  AMD and Intel propose to integrate GPUs on the

same CPU die for fast GPUóCPU connection
q  Deviations from the IEEE754 floating point standard

§  Denormals, NaNs, rounding, Precision lower

26 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Intel “Many Integrated Cores” architecture
q  Announced at ISC10 (June 2010)
q  A research processor, originally conceived as a GPU

§  x86-64 instruction set
§  32 cores @ 1.2 GHz + 4-way hardware multithreaded + 512-bit vector

units: ~ 1TFLOPS SP (50% DP)
§  Limited memory: up to 2GB
§  PCIe card

q  Commercial version in 2012(?): 22nm (?)
§  Many-core (>50 cores) + 4-way hardware multithreaded + 512-bit vectors
§  In project a complete independent system, i.e. more than a just simple

accelerator…

27 Alfio Lazzaro (alfio.lazzaro@cern.ch) Andrzej Nowak – Introduction to CPU accelerators 16

!"#$%&'()"*&!"#$+,)#$-&./,$01&),234#$2#5,$

!6&,0),23&7,/2$00/,8&/,4+4")%%*&2/"2$49$-&)0&
)&:;<
!"#$#%&'()*+,-*'.(&)/*&0)12/&1)&1&2.3/+(&4567
89&:;&-.+/)&<&=>9&?@A
%$B1C&DCE/+&*D+/13'(F&0=9"&*D+/13)&'(&*.*1G7
H'3/&I=9$J'*&K/-*.+)&0J,*&)G.B&L5M&INO&.P&Q57
6E&*.&9?R&2/2.+C
54:/&-1+3

G
ra

ph
ic

s:
 IN

TE
L

Andrzej Nowak – Introduction to CPU accelerators 16

!"#$%&'()"*&!"#$+,)#$-&./,$01&),234#$2#5,$

!6&,0),23&7,/2$00/,8&/,4+4")%%*&2/"2$49$-&)0&
)&:;<
!"#$#%&'()*+,-*'.(&)/*&0)12/&1)&1&2.3/+(&4567
89&:;&-.+/)&<&=>9&?@A
%$B1C&DCE/+&*D+/13'(F&0=9"&*D+/13)&'(&*.*1G7
H'3/&I=9$J'*&K/-*.+)&0J,*&)G.B&L5M&INO&.P&Q57
6E&*.&9?R&2/2.+C
54:/&-1+3

G
ra

ph
ic

s:
 IN

TE
L

FPGAs
q  Hardware programming

§  FPGA can be considered as raw system of transistors that can be
programmed via software

§  Very hard to program for general tasks
§  Great performance for very specialized tasks, with very low power

consumption
q  FPGAs can be used to help CPUs in several tasks

§  Some research project to build HPC systems (e.g. Maxwell at EPCC
(Edinburgh), Janus by INFN
in Italy)

§  Interesting proposal by Intel
last year: Atom CPU + FPGA

28 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Single-chip Cloud Computer

q  48 Core Research Microprocessor
§  Experimental Research Processor – Not A Product

q  “Cluster-on-die” architecture (new concept)
§  48 Pentium Processor cores

q  Interesting possibilities: a lot of parameters can be configured
via software, such as operational voltage and frequency

29

!"#$%&'(')*+(',("'-

!"# $%"%&'()*"+,"(%-+.'/0+%12%&)3%"('-+2&*4%00*&
56733!)"+85"3+9):9;<+3%('-;:'(%+=>?@+
ABCD+(&'"0)0(*&0

;*";
; 1E7FGH

,"(%:&'(%#+IIJC+>%3*&K+=*"(&*--%&0
L*+MN+4'49%+4*"4O&&%"4K+0O22*&(

>%00':%;2'00)":+MN+0O22*&(

@N;4*"(&*--%#+F)"%;:&')"+
2*P%&+3'"':%3%"(

M
em

or
y

C
on

tr
ol

ler

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

M
em

or
y

C
on

tr
ol

ler

M
em

or
y

C
on

tr
ol

ler
M

em
or

y
C

on
tr

ol
ler

System I /F

Tile

!"#$%
!

!"#$%
&

'()
*

'()
&

+",-$# ./
0

!"#$%
!

!"#$%
&

-Core IA-32 Message- in Proceedings of
ISSCC 2010 (IEEE International Solid-State Circuits Conference), Feb. 2010

!"#$%&'(')*+(',("'-

!"# $%"%&'()*"+,"(%-+.'/0+%12%&)3%"('-+2&*4%00*&
56733!)"+85"3+9):9;<+3%('-;:'(%+=>?@+
ABCD+(&'"0)0(*&0

;*";
; 1E7FGH

,"(%:&'(%#+IIJC+>%3*&K+=*"(&*--%&0
L*+MN+4'49%+4*"4O&&%"4K+0O22*&(

>%00':%;2'00)":+MN+0O22*&(

@N;4*"(&*--%#+F)"%;:&')"+
2*P%&+3'"':%3%"(

M
em

or
y

Co
nt

ro
lle

r

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

Tile
R

M
em

or
y

Co
nt

ro
lle

r

M
em

or
y

Co
nt

ro
lle

r
M

em
or

y
Co

nt
ro

lle
r

System I /F

Tile

!"#$%
!

!"#$%
&

'()
*

'()
&

+",-$# ./
0

!"#$%
!

!"#$%
&

-Core IA-32 Message- in Proceedings of
ISSCC 2010 (IEEE International Solid-State Circuits Conference), Feb. 2010

Heterogeneous systems

q  All systems give the best performance for specific tasks
§  There is not a unique system which is suitable for everything!

q  It is a common understanding that future systems for computation will be
an “heterogeneous” systems, where each sub-system will properly
perform his part of execution

30 Alfio Lazzaro (alfio.lazzaro@cern.ch)

HP
CPU

Core 1

Core n

…
 LP

GPU

Socket 1

HP
CPU

Core 1

Core n

…
 LP

GPU

Socket s

…

LP CPUs

Accelerators

HP GPUs

…

FPGAs

?

HP = High Performance; LP = Low Performance

Parallelization in the code languages

q Very challenging!!!
q  Automatic parallelization of a sequential program by a compiler is the holy

grail of parallel computing
§  automatic parallelization has had only limited success so far…

q  Parallelization must be explicitly declared in a program (or at the best
partially implicit, in which a programmer gives the compiler directives for
parallelization)
§  Some languages define parallelization as own instructions

• High Performance Fortran
• Chapel (by Cray)
• X10 (by IBM)
• C++1x (the new C++ standard)

§  In most cases parallelization relays on external libraries
• Native: pthreads/Windows threads
• OpenMP (www.openmp.org)
• Intel Threading Building Blocks (TBB)
• OpenCL (www.khronos.org/opencl)
• CUDA (by NVIDIA, for GPU programming)

31	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Future of softwares

q  I don’t think there will an unique language to
program everything
§  Good projects is OpenCL, an open standard for programming

heterogeneous parallel processors
• Many prominent members of the working group: AMD, ARM, IBM,

Intel, NVIDIA and many others
• Possibility to run the same code on many platforms
• Based on the C99 standard
• Suited for writing computation kernels
• Task-based and data-based parallelism

§ More at http://www.khronos.org/opencl/

q More thinking is required at every software level,
starting from the operating systems

32	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Andrzej Nowak – Introduction to CPU accelerators 27

!"#$%&

!'$()"#$(*+,$-,.-(/).(".)0.,112$0(
3#+#.)0#$#)4*(",.,55#5(".)6#**).*
!"#$%&'()*#+#,%)+)-+'.%(/%,0+%1('2*#3%3'(4&5%
6!78%69!8%:;!8%:#,+<8%=>:7:6%"#?%)"#$%(,0+'.
@(..*-*<*,$%,(%'4#%,0+%.")+%A(?+%(#%)"#$%&<",/(').
;".+?%(#%,0+%BCC%.,"#?"'?
D4*,+?%/('%1'*,*#3%A()&4,",*(#%2+'#+<.
E".2F-".+?%"#?%?","F-".+?%&"'"<<+<*.)

!72.#6+(6)1"#+2+).8(9:;7;'(%<7'
!=).#(,+(3++"8>>???@A3.)$)*@).0>)"#$65>

Conclusion
q  Hardware is definitely changing

§  More than a normal evolution, not yet a revolution (for the moment…)
§  The situation will not change in future (and at least for the next 5 years)

• More and more parallelism in the hardware
§  Research is ongoing

q  Some communities have successfully parallelized their code
§  High Performance Computing applications, mainly based on algebra

applications
§  Game companies

q  Needs to change to think algorithm: think parallel, write parallel!
§  Need to teach parallel techniques just as normal computing course
§  It maybe the case that current software will not properly work in the

future hardware
•  Some tools can alleviate the migration, but it can be not enough…

§  Huge effort from the software side
• Maybe we are already behind the schedule…

§  Users contribution is critical! Be aware and start to parallelize your code
as soon as possible…

33	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Q & A

Foster’s Design Methodology

q Partition
§ Divide problem into tasks

q Communicate
§ Determine amount and

pattern of communication

q Agglomerate
§ Combine tasks

q Map
§ Assign agglomerated

tasks to created threads

35	

The	

Problem	

Initial tasks	

Communication	

Combined Tasks	

Final Program	

From “Designing and Building Parallel Programs” by Ian Foster	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Domain (Data) Decomposition

q Exploit large datasets whose elements can be
computed independently
§  Divide data and associated computation amongst threads
§  Focus on largest or most frequently accessed data

structures
§  Data parallelism: same operation(s) applied to all data

36	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Functional Decomposition

q Divide computation based on a natural set of
independent functions
§  Predictable organization and dependencies
§  Assign data for each task as needed

• Conceptually a single data value or transformation is performed
repeatedly

37	

Atmosphere Model

Ocean
Model

Land Surface
Model

Hydrology
Model

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Activity (Task) Decomposition

q Divide computation based on a natural set of
independent tasks
§ Non deterministic transformation
§  Assign data for each task as needed
§  Little communication

q Example: Paint-by-numbers
§  Painting a single color is a single task

38	

1
1 1 2 2

3
3 3

3
3

3 3

3 3
3

4

4
4

4

5 5 5 5 5
5 5

5
5

5 5 5 5 5
3 6

6

7 9

8

3

8

3
3

8 8

9

1

1
0

7

6

1
1

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Definition of concurrency/parallelism

q  Concurrent programming: the program can be logically split in
independent parts (threads)
§  Concurrent programs can be executed sequentially on a single CPU by

interleaving the execution steps of each computational process
§  Benefits can arise from the use of I/O resources

• Example: a thread is waiting for a resource reply (e.g. data form disk), so
another thread can be executed by the CPU

• Keep CPU busy as much as possible
q  Parallel execution: Independent parts of a program execute

simultaneously

39	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Other some basic definitions
q  Process: an instance of a computer program that is

being executed (sequentially). It contains the program
code and its current activity: its own “address space”
with all the program code and data, its own file
descriptors with the operating system permission, its
own heap and its own stack.

q  SW Thread: a process can fork in different threads of
execution. These threads run in the same address
space, share the same program code, the operating
system resources as the process they belong to. Each
thread gets its own stack.

q  Core: unity for executing a software process or thread:
execution logic, cache storage, register files, instruction
counter (IC)

q  HW Thread: addition of a set of register files plus IC
40	

So
ft

w
ar

e
le

ve
l	

H
ar

dw
ar

e
le

ve
l	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Parallel Environments

41	

P

T T

P

T T T T

P

T T T

P

T

P

T

Applications

Operating System & Run-Time System

S

C C

S

C C

S

C C C C

S

C C

P: process
T: thread
C: core
S: socket (Shared) Memory

Schematic overview
Alfio Lazzaro (alfio.lazzaro@cern.ch)

Parallelization in High Energy Physics

–  Event-level parallelism mostly used
»  Compute one event after the other in a single process
»  Advantage: large jobs can be split into N efficient processes, each

responsible for process M events
•  Built-in scalability

»  Disadvantage: memory must be made available to each process
•  With 2 – 4 GB per process, with a dual-socket server with Quad-core

processors we need 16 –32 GB (or more)
•  Memory is expensive (power and cost!) and the capacity does not scale as the

number of cores

•  A lot of recent efforts in this area (see CHEP presentations at Tapei)
–  Algorithm parallelization

»  Prototypes using posix-thread, OpenMP, CUDA, and parallel gcclib
•  Online: track finding and fitting
•  Data analysis software

»  Effort to provide basic thread-safe/multi-thread library components
42	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Patterns for Parallel Programming

q  In order to create complex software it is necessary
to compose programming patters

q Examples:
§  Pipes and filters
§  Layered systems
§  Agents and Repository
§  Event-Based Systems
§  Puppeteer
§ Map/Reduce

43	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

Opportunity: Reconstruction Memory-Footprint shows large condition data	

How to share common data between different process?	

à  multi-process vs multi-threaded	

à  Read-only: Copy-on-write, Shared Libraries	

à  Read-write: Shared Memory, sockets, files	

Event parallelism

44	

CMS:	

1GB total Memory
Footprint	

Event Size 1 MB	

Sharable data 250MB	

Shared code 130MB	

Private Data 400MB !!	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

CHEP10 Plenary by R. Jones (ATLAS)

“The experiment offline systems after one year”

45	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

CHEP10 Plenary by S. Jarp (CERN/Openlab)

“How to harness the performance potential of
current Multi-Core CPUs and GPUs”

46	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

CHEP10 Parallel by C. Leggett (ATLAS)

“Parallelizing Atlas reconstruction and simulation
on multi-core platforms”

47	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

CHEP10 Parallel by C. Jones (CMS)

“Multi-core aware Applications in CMS”

48	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

CHEP10 Parallel by A. Lazzaro (CERN/Openlab)

“Maximum likelihood fits using GPUs”

49	

Alfio Lazzaro (alfio.lazzaro@cern.ch)

